Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 10 entries in the Bibliography.


Showing entries from 1 through 10


2022

Pronounced Suppression and X-Pattern Merging of Equatorial Ionization Anomalies After the 2022 Tonga Volcano Eruption

Following the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere-thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global-scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption-induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14–17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X-pattern in a limited longitudinal area between 20 and 40°W. (c) Thermospheric horizontal winds, especially the zonal winds, showed long-lasting quasi-periodic fluctuations between ±200 m/s for 7–8 hr after the passage of volcano-induced Lamb waves. The EIA suppression and X-pattern merging was consistent with a westward equatorial zonal dynamo electric field induced by the strong zonal wind oscillation with a westward reversal.

Aa, Ercha; Zhang, Shun-Rong; Wang, Wenbin; Erickson, Philip; Qian, Liying; Eastes, Richard; Harding, Brian; Immel, Thomas; Karan, Deepak; Daniell, Robert; Coster, Anthea; Goncharenko, Larisa; Vierinen, Juha; Cai, Xuguang; Spicher, Andres;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2022     DOI: 10.1029/2022JA030527

EIA suppression and X-pattern; Equatorial ionization anomaly; GNSS TEC; GOLD UV images; ICON MIGHTI neutral wind; Tonga volcano eruption

2021

Comparison of ionospheric anomalies over African equatorial/low-latitude region with IRI-2016 model predictions during the maximum phase of solar cycle 24

The capability of IRI-2016 in reproducing the hemispheric asymmetry, the winter and semiannual anomalies has been assessed over the equatorial ionization anomaly (EIA) during quiet periods of years 2013–2014. The EIA reconstructed using Total Electron Content (TEC) derived from Global Navigation Satellite System was compared with that computed using IRI-2016 along longitude 25° − 40oE. These were analyzed along with hemispheric changes in the neutral wind derived from the horizontal wind model and the TIMED GUVI columnar O/N2 data. IRI-2016 clearly captured the hemispheric asymmetry of the anomaly during all seasons albeit with some discrepancies in the magnitude and location of the crests. The winter anomaly in TEC which corresponded with greater O/N2 in the winter hemisphere was also predicted by IRI-2016 during December solstice. The model also captured the semiannual anomaly with stronger crests in the northern hemisphere. Furthermore, it reproduced the variation trend of the asymmetry index (A) in December solstice and equinox during noon. However, in June solstice the model failed to capture the winter anomaly and misrepresented the variation of A. This was linked with its inability to accurately predict the pattern of the neutral wind, the maximum height of the F2 layer and the changes in O/N2 in both hemispheres. The difference between the variations of EUV and F10.7 fluxes was also a potential source of errors in IRI-2016. The results highlight the significance of the inclusion of wind data in IRI-2016 in order to enhance its performance over East Africa.

Amaechi, Paul; Oyeyemi, Elijah; Akala, Andrew; Kaab, Mohamed; Younas, Waqar; Benkhaldoun, Zouhair; Khan, Majid; Mazaudier, Christine-Amory;

Published by: Advances in Space Research      Published on: aug

YEAR: 2021     DOI: 10.1016/j.asr.2021.03.040

Equatorial ionization anomaly; hemispheric asymmetry; IRI-2016; Semiannual anomaly; Winter anomaly

Equatorial Ionization Anomaly Variations During Geomagnetic Storms

The equatorial ionization anomaly (EIA) was discovered in the 1940s. Since then, the research on ionospheric storm effects at the equatorial and low latitudes has become one of the hottest topics in the ionospheric community. During the past 2 decades, large amounts of ionospheric and thermospheric data from the ground-based and satellite-borne observations and also from the novel capability of three-dimensional numerical models stimulated the ionospheric weather studies. Recent scientific progresses on the EIA response to geomagnetic storms are briefly described here, together with some suggestions for the future research directions of the EIA storm effects.

Luan, Xiaoli;

Published by:       Published on:

YEAR: 2021     DOI: 10.1002/9781119815617.ch13

Geomagnetic storms; Equatorial ionization anomaly; equatorial ionospheric response; equatorial regions; low latitude regions; physical mechanisms

A Synoptic-Scale Wavelike Structure in the Nighttime Equatorial Ionization Anomaly

Both ground- and satellite-based airglow imaging have significantly contributed to understanding the low-latitude ionosphere, especially the morphology and dynamics of the equatorial ionization anomaly (EIA). The NASA Global-scale Observations of the Limb and Disk (GOLD) mission focuses on far-ultraviolet airglow images from a geostationary orbit at 47.5°W. This region is of particular interest at low magnetic latitudes because of the high magnetic declination (i.e., about -20°) and proximity of the South Atlantic magnetic anomaly. In this study, we characterize an exciting feature of the nighttime EIA using GOLD observations from October 5, 2018 to June 30, 2020. It consists of a wavelike structure of a few thousand kilometers seen as poleward and equatorward displacements of the EIA-crests. Initial analyses show that the synoptic-scale structure is symmetric about the dip equator and appears nearly stationary with time over the night. In quasi-dipole coordinates, maxima poleward displacements of the EIA-crests are seen at about ± 12° latitude and around 20 and 60° longitude (i.e., in geographic longitude at the dip equator, about 53°W and 14°W). The wavelike structure presents typical zonal wavelengths of about 6.7 × 103 km and 3.3 × 103 km. The structure s occurrence and wavelength are highly variable on a day-to-day basis with no apparent dependence on geomagnetic activity. In addition, a cluster or quasi-periodic wave train of equatorial plasma depletions (EPDs) is often detected within the synoptic-scale structure. We further outline the difference in observing these EPDs from FUV images and in situ measurements during a GOLD and Swarm mission conjunction.

Rodríguez-Zuluaga, J.; Stolle, C.; Yamazaki, Y.; Xiong, C.; England, S.;

Published by: Earth and Space Science      Published on:

YEAR: 2021     DOI: 10.1029/2020EA001529

equatorial plasma bubbles; Equatorial ionization anomaly; Equatorial ionosphere; forcing from below; wave structure

First Look at a Geomagnetic Storm With Santa Maria Digisonde Data: F Region Responses and Comparisons Over the American Sector

Santa Maria Digisonde data are used for the first time to investigate the F region behavior during a geomagnetic storm. The August 25, 2018 storm is considered complex due to the incidence of two Interplanetary Coronal Mass Ejections and a High-Speed Solar Wind Stream (HSS). The F 2 layer critical frequency (f o F 2) and its peak height (h m F 2) collected over Santa Maria, near the center of the South American Magnetic Anomaly (SAMA), are compared with data collected from Digisondes installed in the Northern (NH) and Southern (SH) Hemispheres in the American sector. The deviation of f o F 2 (Df o F 2) and h m F 2 (Dh m F 2) are used to quantify the ionospheric storm effects. Different F region responses were observed during the main phase (August 25–26), which is attributed to the traveling ionospheric disturbances and disturbed eastward electric field during nighttime. The F region responses became highly asymmetric between the NH and SH at the early recovery phase (RP, August 26) due to a combination of physical mechanisms. The observed asymmetries are interpreted as caused by modifications in the thermospheric composition and a rapid electrodynamic mechanism. The persistent enhanced thermospheric [O]/[N2] ratio observed from August 27 to 29 combined with the increased solar wind speed induced by the HSS and IMF B z fluctuations seem to be effective in causing the positive ionospheric storm effects and the shift of the Equatorial Ionization Anomaly crest to higher than typical latitudes. Consequently, the most dramatic positive ionospheric storm during the RP occurred over Santa Maria (∼120\%).

Moro, J.; Xu, J.; Denardini, C.; Resende, L.; Neto, P.; Da Silva, L.; Silva, R.; Chen, S.; Picanço, G.; Carmo, C.; Liu, Z.; Yan, C.; Wang, C.; Schuch, N.;

Published by: Journal of Geophysical Research: Space Physics      Published on:

YEAR: 2021     DOI: 10.1029/2020JA028663

Digisonde; Equatorial ionization anomaly; F-region; Ionospheric storm; SAMA; space weather

2016

Effects of the Equatorial Ionosphere Anomaly on the Inter-Hemispheric Circulation in the Thermosphere

We investigate the interhemispheric circulation at the solstices, in order to understand why O/N2\ is larger in the northern hemisphere winter than in the southern hemisphere winter. Our studies reveal that the equatorial ionosphere anomaly (EIA) significantly impacts the summer-to-winter wind through plasma-neutral collisional heating, which changes the summer-to-winter pressure gradient, and ion drag. Consequently, the wind is suppressed in the summer hemisphere as it encounters the EIA but accelerates after it passes the EIA in the winter hemisphere. The wind then converges due to an opposing pressure gradient driven by Joule heating in auroral regions and produces large O/N2\ at subauroral latitudes. This EIA effect is stronger near the December solstice than near the June solstice because the ionospheric annual asymmetry creates greater meridional wind convergence near the December solstice, which in turn produces larger O/N2\ in the northern hemisphere winter than in the southern hemisphere winter.

Qian, Liying; Burns, Alan; Wang, Wenbin; Solomon, Stanley; Zhang, Yongliang; Hsu, V.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015JA022169

Equatorial ionization anomaly; interhemispheric circulation; ionosphere winter anomaly; plasma-neutral collisional heating; thermosphere composition; vertical advection

2014

Spatial distribution of TEC across India in 2005: Seasonal asymmetries and IRI prediction

Total electron content measured simultaneously at 10 locations over India during the low solar activity year 2005 is used to examine the temporal and spatial asymmetries and also to assess the predictability of the International Reference Ionosphere in respect of the observed asymmetrical distribution. The stations are distributed in latitude along 77\textdegreeE and in longitude along 23\textdegreeN forming a meridional and a zonal chain respectively. A longitudinal gradient positive towards east was observed in the daytime hours of equinox and summer. Equinoctial asymmetry was prevalent across India during this year. Within the crest and equator, winter anomaly has been observed. It is found that IRI 2012 (with Ne Quick option, URSI coefficients) is unable to fully capture the temporal variation and spatial gradients of the ionization density in the Indian sector during 2005. The amount of offset between the model and measurement varies with local time and location.

Hazarika, Rumajyoti; Bhuyan, Pradip;

Published by: Advances in Space Research      Published on: 11/2014

YEAR: 2014     DOI: 10.1016/j.asr.2014.07.011

Equatorial ionization anomaly; Ionosphere; IRI; solar activity; TEC

2013

Ionospheric response to a geomagnetic storm during November 8--10, 2004

This paper investigates the response of the equatorial, and near equatorial, ionosphere to geomagnetic disturbances during the period November 8-10, 2004. Ionosonde data from Trivandrum (8.5\textdegreeN 77\textdegreeE and dip 0.5\textdegreeN) and SHAR (13.5\textdegreeN, 80.2\textdegreeE, dip \~5.5\textdegreeN), magnetic field data from Tirunelveli (8.7\textdegreeN, 76.9\textdegreeE, dip latitude 0.5\textdegreeS) and Alibag (18.64\textdegreeN, 72.87\textdegreeE), and GUVI O/N2 data in the Indian longitude sector, are used for the study. The behavior of interplanetary parameters is also examined in conjunction with the ionospheric data. On 8 November, the EIA around noontime is not fully inhibited even though the electrojet strength an indicates inhibition of EIA due to a disturbance dynamo electric field effect. It is the enhanced O/N2 over TRV and SHAR, with a larger increase over SHAR, which results in a larger (than expected) value of the EIA proxy parameter. On 9 November, the comparable values of foF2 at TRV and SHAR around noon time is due to the combined effect of a weakened anomaly in the presence disturbance dynamo electric field effects leading to the EIA crest being near SHAR, and increased O/N2 values at TRV and SHAR with a larger increase at TRV. On 10 November, the very strong values of the EIA proxy-SHAR parameter is attributed to the combined effects of prompt penetration electric field related modulations of EIA, and significant O/N2 changes at the equatorial, and near equatorial, latitude. Thus, the study reveals the important role of storm-induced O/N2 changes, along with prompt penetration electric fields and disturbance dynamo electric fields in modulating the ionization distribution in the equatorial ionization anomaly (EIA) region during this period.

Simi, K.; Manju, G.; Haridas, M.; Nayar, S.; Pant, Tarun; Alex, S.;

Published by: Earth, Planets and Space      Published on: 05/2013

YEAR: 2013     DOI: 10.5047/eps.2012.09.005

Equatorial Electrojet; Equatorial ionization anomaly; geomagnetic storm; O/N2 ratio

2012

Ionospheric plasma caves under the equatorial ionization anomaly

This paper reports the existence of plasma caves, minima in the electron density located at 5\textendash10\textdegree to the magnetic equator, in the bottomside ionosphere based on electron densities simulations from the International Reference Ionosphere (IRI-2007) and clear evidences given by plasma density and drift measurements of the Dynamic Explorer 2 (DE 2) satellite during 1981\textendash1983. The IRI simulations suggest plasma caves as daytime features (08:00\textendash19:00 LT; length of 18,158 km in the longitudinal direction), that range from theE region up to about 300 km altitude with 10\textdegree (or 1100 km) width in the latitudinal direction. In situ measurements of the ion and electron densities probed by the DE 2 confirm the existence of the plasma caves at low altitudes of the EIA ionosphere. The unexpected downward and upward (or weakly and strongly upward) ion drifts at the magnetic equator and the two off equators seem to play an important role responsible for the plasma cave formation.

Lee, I.; Liu, J; Lin, C.; Oyama, K.-I.; Chen, C; Chen, C.;

Published by: Journal of Geophysical Research      Published on: 11/2012

YEAR: 2012     DOI: 10.1029/2012JA017868

Dynamic Explorer 2; Equatorial ionization anomaly; plasma cave

2006

Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI

We investigate the seasonal, longitudinal, and altitudinal variations of the FF-region morphology at 2100\textendash2300\ LT in the low- and middle-latitudes using the data collected in August, September, and November of 2003. The topside morphology is investigated using in situ measurements of the O+O+ fraction and total ion density by the Defense Meteorological Satellite Program (DMSP) F15 satellite. The morphology of the equatorial ionization anomaly (EIA) near the FF peak altitude is investigated using the OI 135.6-nm radiance maps provided by the Global Ultraviolet Imager (GUVI) on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. The hemispheric asymmetries of the topside ionosphere at 840\ km in the months near solstices can be characterized by the reduction of the O+O+ fraction and ion density in the winter hemisphere compared to those in the summer hemisphere. The minimum O+O+ fraction and ion density layers occur around 30o30o magnetic latitude in the winter hemisphere. During the fall equinox, the hemispheric asymmetries are reversed in the regions of opposite magnetic declinations. From the comparison of the topside morphology with the global wind circulation pattern at 2200\ LT predicted by the Horizontal Wind Model 93 (HWM93) we infer that hemispheric asymmetry of the topside ionosphere is created primarily by the retardation of the downward plasma diffusion in one hemisphere through the field-aligned equatorward winds. The global EIA morphology does not conform to the topside morphology. The complex seasonal-longitudinal variations of the EIA strength and asymmetry are not explained simply by considering the modulation of the FF-layer height by the winds. The magnetic declination is not a useful tool in understanding the global EIA morphology.

Kil, Hyosub; DeMajistre, Robert; Paxton, L.; Zhang, Yongliang;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 09/2006

YEAR: 2006     DOI: 10.1016/j.jastp.2006.05.024

Equatorial ionization anomaly; FF-region plasma distribution; low-latitude ionosphere; Neutral wind



  1